Perkembangan Irigasi Pintar pada Melon (Cucumis melo L) Hidroponik (Sebuah Studi literatur)

Authors

  • Qudrat Aini Universitas Muhammadiyah Malang, Indonesia
  • Wahono Universitas Muhammadiyah Malang, Indonesia
  • Agus Zainuddin Universitas Muhammadiyah Malang, Indonesia
  • Fatimah Nursandi Universitas Muhammadiyah Malang, Indonesia
  • Padhina Pangestika Universitas Muhammadiyah Malang, Indonesia

DOI:

https://doi.org/10.31850/jgt.v14i1.1099

Keywords:

irrigation, automatic, watering technology

Abstract

Melon consumption has increased yearly due to the number of consumers. It requires rising production and land. The limited land area encourages the implementation of hydroponics with an irrigation system. This article aims to summarize various results of recent studies regarding the development and use of smart irrigation systems based on the Internet of Things and fuzzy logic in hydroponic melon cultivation using the Nutrient Film Technique method and drip irrigation. Water requirements greatly influence melon plants from vegetative growth to fruit ripening. The provision of water is carried out using the Nutrient Film Technique (NFT) irrigation technique, and drip irrigation is more optimal, requiring smart irrigation system technology. This system focuses on water supply according to plant needs, phenological phases, and environmental conditions. Based on the literature, two types of technology have been summarized: IoT-based irrigation can save water supply by up to 90% compared to the fuzzy logic method, which is around 29%. We hoped that a smart irrigation system for melons would increase the productivity of melon plants, especially hydroponic cultivation.

Author Biographies

Qudrat Aini, Universitas Muhammadiyah Malang

Program Studi Agroteknologi, Fakultas Pertanian Peternakan, Universitas Muhammadiyah Malang

Wahono, Universitas Muhammadiyah Malang

Program Studi Agroteknologi, Fakultas Pertanian Peternakan, Universitas Muhammadiyah Malang

Agus Zainuddin, Universitas Muhammadiyah Malang

Program Studi Agroteknologi, Fakultas Pertanian Peternakan, Universitas Muhammadiyah Malang

Fatimah Nursandi, Universitas Muhammadiyah Malang

Program Studi Agroteknologi, Fakultas Pertanian Peternakan, Universitas Muhammadiyah Malang

Padhina Pangestika, Universitas Muhammadiyah Malang

Program Studi Agroteknologi, Fakultas Pertanian Peternakan, Universitas Muhammadiyah Malang

References

Adenugba, F., Misra, S., Maskeli?nas, R., Damaševi?ius, R., & Kazanavi?ius, E. (2019). Smart Irrigation System for Environmental Sustainability in Africa: An Internet of Everything (IoE) Approach. Mathematical Biosciences and Engineering, 16(5), 5490–5503. https://doi.org/10.3934/mbe.2019273

Akhoundnejad, Y., & Dasgan, H. (2019). Effect of Different Irrigation Levels on Physiological Performance of Some Drought Tolerant Melon (Cucumis melo l.) Genotypes. Applied Ecology and Environmental Research, 17(4), 9997–10012. https://doi.org/10.15666/aeer/1704_999710012

Al-Mefleh, N. K., Samarah, N., Zaitoun, S., & Al-Ghzawi, A. A. M. (2012). Effect of Irrigation Levels on Fruit Characteristics, Total Fruit Yield and Water use Efficiency of Melon under Drip Irrigation System. Journal of Food, Agriculture and Environment, 10(2), 540–545.

Amarasinghe, R. M. N. T., Sakimin, S. Z., Wahab, P. E. M., Ramlee, S., & Jaafar, J. N. (2021). Growth, Physiology and Yield Responses of Four Rock Melon (Cucumis Melo Var. Cantaloupensis) Cultivars in Elevated Temperature. Plant Archives, 21(2), 259–266. https://doi.org/10.51470/plantarchives.2021.v21.no2.040.

Andaluz, V. H., Tovar, A. Y., Bedon, K. D., Ortiz, J. S., & Pruna, E. (2016). Automatic Control of Drip Irrigation on Hydroponic Agriculture: Daniela Tomato Production. 2016 IEEE International Conference on Automatica, ICA-ACCA 2016, 22, 27–32. https://doi.org/10.1109/ICA-ACCA.2016.7778389

Ani, A., & Gopalakirishnan, P. (2020). Automated Hydroponic Drip Irrigation Using Big Data. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 370–375. https://doi.org/10.1109/ICIRCA48905.2020.9182908

Asaduzzaman, M., Saifullah, M., Mollick, A. K. M. S. R., Hossain, M. M., Halim, G. M. A., & Asao, T. (2015). Influence of Soilless Culture Substrate on Improvement of Yield and Produce Quality of Horticultural Crops. In Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops. https://doi.org/10.5772/59708

Atzori, G., Pane, C., Zaccardelli, M., Cacini, S., & Massa, D. (2021). The Role of Peat-free Organic Substrates in the Sustainable Management of Soilless Cultivations. Agronomy, 11(6), 1–29. https://doi.org/10.3390/agronomy11061236

Bachri, A., & Utomo, E. W. (2017). Prototype Penyiram Tanaman Otomatis Dengan Sensor Kelembaban Tanah Berbasis Atmega 328. JE-Unisla, 2(1). https://doi.org/10.30736/JE.V2I1.33

Bafdal, N., Ardiansah, I., & Asmara, S. (2022). Application of Internet of Things (IoT) on Microclimate Monitoring System in The ALG Unpad Greenhouse Based on Raspberry Pi. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 11(3), 518. https://doi.org/10.23960/jtep-l.v11i3.518-530

Banitalebi, G., Mosaddeghi, M. R., & Shariatmadari, H. (2019). Feasibility of Agricultural Residues and Their Biochars for Plant Growing Media: Physical and Hydraulic Properties. Waste Management, 87, 577–589. https://doi.org/10.1016/j.wasman.2019.02.034

Chamara, A. H. M. N., Perera, K. C. R., Amarasinghe, R., & Nandika, W. S. D. (2012). Development of a Sensor Based Self Powered Smart Control System for Agricultural Irrigation Systems. Journal of Food and Agriculture, 5(1–2), 30. https://doi.org/10.4038/jfa.v5i1-2.5180

Choi, E. Y., Seo, S. K., Choi, K. Y., & Lee, Y. B. (2014). Development of a Non-Drainage Hydroponic System with a Coconut Coir Substrate by a Frequency Domain Reflectometry Sensor for Tomato Cultivation. Journal of Plant Nutrition, 37(5), 748–764. https://doi.org/10.1080/01904167.2013.868479

Christy, J., Putri, L. A. P., & Hanafiah, D. S. (2018). A Study of Hydroponic Melon Cultivations With Several Substrate Media and Varieties. Journal of Community Research and Service, 1(2), 92. https://doi.org/10.24114/jcrs.v1i2.9343

Conn, S. J., Hocking, B., Dayod, M., Xu, B., Athman, A., Henderson, S., Aukett, L., Conn, V., Shearer, M. K., Fuentes, S., Tyerman, S. D., & Gilliham, M. (2013). Protocol: Optimising Hydroponic Growth Systems for Nutritional and Physiological Analysis of Arabidopsis Thaliana and Other Plants. Plant Methods, 9(1), 1–11. https://doi.org/10.1186/1746-4811-9-4

Cui-hua, H., Xian, X., Quan-Gang, Y., Li, Z., & Jun, L. (2016). Effects of Irrigation Frequency on Yield and Quality of Melon Under Field Conditions in Minqin Oasis. International Research Journal of Public and Environmental Health, 3(12), 293–299. http://dx.doi.org/10.15739/irjpeh.16.036

Da Silva Dias, N., de Morais, P. L. D., Sarmento, J. D. A., de Sousa Neto, O. N., Palácio, V. S., & de Freitas, J. J. R. (2018). Nutrient Solution Salinity Effect of Greenhouse Melon (Cucumis melon L. Cv. Néctar). Acta Agronomica, 67(4), 517–524. https://doi.org/10.15446/acag.v67n4.60023

Dela Vega, J. A., Gonzaga, J. A., & Gan Lim, L. A. (2021). Fuzzy-based Automated Nutrient Solution Control for a Hydroponic Tower System. IOP Conference Series: Materials Science and Engineering, 1109(1), 012064. https://doi.org/10.1088/1757-899x/1109/1/012064

Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745

El-Obeid, A. K., & El-Shaabani, E. M. H. (2021). Surface, Subsurface Drip and Nano-Oozing Irrigation Effects on Some Physical Characteristics of Tillage and Untilled Soil. IOP Conference Series: Earth and Environmental Science, 761(1), 1–8. https://doi.org/10.1088/1755-1315/761/1/012012

El-Wanis, M. M. A., Abdel-Baky, M. M. ., & Salman, S. R. (2018). Studies on Water use Efficiency of Grafted and Non-grafted Melon Plants Grown under Two Soilless Culture System. Journal of Agricultural Technology, 96(4), 1437–1456.

Fabeiro, C., Martín de Santa Olalla, F., & De Juan, J. A. (2002). Production of Muskmelon (Cucumis melo L.) Under Controlled Deficit Irrigation in a Semi-arid Climate. Agricultural Water Management, 54(2), 93–105. https://doi.org/10.1016/S0378-3774(01)00151-2

Falah, M. A. F., Khuriyati, N., Nurulfatia, R., & Dewi, K. (2013). Controlled Environment with Artificial Lighting for Hydroponics Production Systems. Journal of Agricultural Technology, 9(4), 769–777.

Fang, S.-L., Chang, T.-J., Tu, Y.-K., Chen, H.-W., Yao, M.-H., & Kuo, B.-J. (2022). Plant-Response-Based Control Strategy for Irrigation and Environmental Controls for Greenhouse Tomato Seedling Cultivation. Agriculture (Switzerland), 12(5). https://doi.org/10.3390/agriculture12050633

Fatahian, V., Halim, R. A., Ahmad, I., Chua, K., Teh, C. B. S., & Awang, Y. (2013). Melon Production using four Hydroponic Systems. Acta Horticulturae, 1004(July 2018), 85–92. https://doi.org/10.17660/ActaHortic.2013.1004.8

Frasetya, B., Nurfatha, N., Harisman, K., & Subandi, M. (2018). Growth and Yield of Hydroponic Watermelon with Straw Compost Substrate and Gibereline (GA3) Application. IOP Conference Series: Materials Science and Engineering, 434(1), 1–6. https://doi.org/10.1088/1757-899X/434/1/012111

Ghehsareh, A. M., Borji, H., & Jafarpour, M. (2019). Effect of Some Culture Substrates (date-palm peat, cocopeat and perlite) on Some Growing Indices and Nutrient Elements Uptake in Greenhouse Tomato. African Journal of Microbiology Research, 13(2), 1–6. https://doi.org/10.5897/ajmr10.786

Ghehsareh, A. M., Samadi, N., & Borji, H. (2011). Comparison of Date-palm Wastes and Perlite as Growth Substrates on Some Tomato Growing Indexes. African Journal of Biotechnology, 10(24), 4871–4878. https://doi.org/10.5897/AJB10.2106

Hasbi. (2020). Kelayakan Tekno-Ekonomi Sistem Irigasi Curah, Tetes dan Kendi Pada Budidaya Tanaman Melon (Cucumis melo L). Jurnal Keteknikan Pertanian, 20(1), 1–8.

Helmy, Nursyahid, A., Setyawan, T. A., & Hasan, A. (2016). Nutrient Film Technique ( NFT ) Hydroponic Monitoring System. Journal of Applied Information and Communication Technologies (JAICT), 1(1), 1–6.

Hilmi, M. A. Al, Sumarudin, A., & Putra, W. P. (2020). One-Time-Password (Otp) dengan Modifikasi Vigenere Chiper dan Perangkat USB Berbasis Microcontroller, Sensor Fingerprint, dan Real Time Clock (RTC) untuk Autentikasi Pengguna Pada Akses Aplikasi Web. Cyber Security Dan Forensik Digital, 3(2), 6–11. https://doi.org/10.14421/csecurity.2020.3.2.2082

Ibrahim, M. N. R., Solahudin, M., & Widodo, S. (2015). Control System for Nutrient Solution of Nutrient Film Technique using Fuzzy Logic. Telkomnika (Telecommunication Computing Electronics and Control), 13(4), 1281–1288. https://doi.org/10.12928/telkomnika.v13i4.2113

Jarwar, A. H., Wang, X., Wang, L., Zhanshuai, L., Zhaoyang, Q., Mangi, N., Pengjia, B., Ma, Q., & Shuli, F. (2019). Performance and Evaluation of Drip Irrigation System, and Its Future Advantages. Journal of Biology, Agriculture and Healthcare, 4(1), 27–41. https://doi.org/10.7176/jbah/9-9-04

Jeenprasom, P., Chulaka, P., Kaewsorn, P., & Chunthawodtiporn, J. (2019). Effects of Relative Humidity and Growing Medium Moisture on Growth and Fruit Quality of Melon (Cucumis melo L.). International Forum on Horticultural Product Quality, 1245, 35–39. https://doi.org/10.17660/ActaHortic.2019.1245.5

Jett, L. W. (2006). High Tunel Melon and Watermelon Production. Department of Horticulture University of Missouri Columbia,

Kalaivani, K., & Jawaharlal, M. (2019). Study on Physical Characterization of Coco peat with Different Proportions of Organic Amendments for Soilless Cultivation. Journal of Pharmacognosy and Phytochemistry, 8(3), 2283--2286.

Khanna, N., Singh, G., Jain, D., & Kaur, M. (2014). Design and Development of Soil Moisture Sensor and Response Monitoring System. International Journal of Innovative Technology and Exploring Engineering, 3(6), 142–145. https://doi.org/10.35940/ijitee.d8438.021042

Khudoyberdiev, A., Ahmad, S., Ullah, I., & Kim, D. (2020). An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment. Energies, 13(2), 1–27. https://doi.org/10.3390/en13020289

Kumari, G. M., & Devi, D. V. V. (2013). Real-Time Automation and Monitoring System for Modernized Agriculture. International Journal of Review and Research in Applied Sciences and Engineering, 3(1), 7–12. http://www.ijcns.com/pdf/ijrras2.pdf

Kurniawan, D., Yaddarabullah, & Suprayitno, G. (2018). Implementasi Internet of Things pada Sistem Irigasi Tetes dalam Membantu Pemanfaatan Urban Farming. Prosiding University Research Colloquium, 106–117. https://www.researchgate.net/publication/325681461_Implementasi_Internet_of_Things_pada_Sistem_Irigasi_Tetes_dalam_Membantu_Pemanfaatan_Urban_Farming?_sg=Co4DL1P_L4xMGz7aeuFeZB_X_iGTB9rCM8Qie3Zju19mLF8Pz_vVi2-IAp3tJGku8age-3hmgTk4EWb2kHCQa6_Ex8q2B2qRy8_-u

Li, J., Chen, L., Li, Y., & Liu, Y. (2008). Field Evaluation of Emitter Clogging in Subsurface Drip Irrigation Systems. American Society of Agricultural and Biological Engineers Annual International Meeting 2008, ASABE 2008, 1, 1–12. https://doi.org/10.13031/2013.24588

Li, Y.-J., Yuan, B. Z., Bie, Z. L., & Kang, Y. (2012). Effect of Drip Irrigation Criteria on Yield and Quality of Muskmelon Grown in Greenhouse Conditions. Agricultural Water Management, 109, 30–35. https://doi.org/10.1016/j.agwat.2012.02.003

Li, Y., Niu, W., Cao, X., Zhang, M., Wang, J., & Zhang, Z. (2020). Growth Response of Greenhouse-Produced Muskmelon and Tomato to Sub-surface Drip Irrigation and Soil Aeration Management Factors. BMC Plant Biology, 20(1), 1–17. https://doi.org/10.1186/s12870-020-02346-y

Lopez-Pozos, R., Martinez-Gutierrez, G. A., & Perez-Pacheco, R. (2011). The Effects of Slope and Channel Nutrient Solution Gap Number on The Yield of Tomato Crops by a Nutrient Film Technique System under a Warm Climate. HortScience, 46(5), 727–729. https://doi.org/10.21273/hortsci.46.5.727

Lozano, C. S., Rezende, R., De Freitas, P. S. L., Hachmann, T. L., Santos, F. A. S., & Andrean, A. F. B. A. (2017). Estimatation of Evapotranspiration and Crop Coefficient of Melon Cultivated in Protected Environment. Revista Brasileira de Engenharia Agricola e Ambiental, 21(11), 758–762. https://doi.org/10.1590/1807-1929/agriambi.v21n11p758-762

Manuhara, Y. S. W., Novi Kristanti, A., Sugiharto, S., Sugiarso, R. D., Kartjito Putro, Y., & Wal Yudha, A. (2022). Empowerment of Youth Community in Poso Regency, Through Produce Tomato and Melon by Hydroponic System. Darmabakti Cendekia: Journal of Community Service and Engagements, 4(1), 8–15. https://doi.org/10.20473/dc.v4.i1.2022.8-15

Martinez-Mate, M. A., Martin-Gorriz, B., Martínez-Alvarez, V., Soto-García, M., & Maestre-Valero, J. F. (2018). Hydroponic System and Desalinated Seawater as an Alternative Farm-productive Proposal in Water Scarcity Areas: Energy and Greenhouse Gas Emissions Analysis of Lettuce Production in Southeast Spain. Journal of Cleaner Production, 172, 1298–1310. https://doi.org/10.1016/j.jclepro.2017.10.275

Martyn, R. D. (2002). Monosporascus Root Rot and Vine Decline of Melons (MRR/VD). Also referred to as sudden wilt, sudden death, melon collapse, Monosporascus wilt, and black pepper root rot. The Plant Health Instructor, February, 1-11 Doi:10.1094/PHI-I-2002-0612–01. https://doi.org/10.1094/phi-i-2002-0612-01

Mashumah, S., Rivai, M., & Irfansyah, A. N. (2018). Nutrient Film Technique based Hydroponic System Using Fuzzy Logic Control. Proceeding - 2018 International Seminar on Intelligent Technology and Its Application, ISITIA 2018, May 2019, 387–390. https://doi.org/10.1109/ISITIA.2018.8711201

Melo, T. K. De, Sobrinho, J. E., Medeiros, J. F. De, & Figueiredo, V. B. (2022). Future Emission Scenario Effects on Melon Cultivars ( Cucumis melo L .) in the Brazilian Semi-Arid Region. Agronomy Journal, 12(11), 1–12.

Monteiro, R. O. C., Coelho, R. D., Monteiro, P. F. C., Whopmans, J., & Lennartz, B. (2013). Water Consumption and Soil Moisture Distribution in Melon Crop With Mulching and in a Protected Environment. Revista Brasileira de Fruticultura, 35(2), 555–564. https://doi.org/10.1590/S0100-29452013000200026

Moyano, F. E., Manzoni, S., & Chenu, C. (2013). Responses of Soil Heterotrophic Respiration to Moisture Availability: An Exploration of Processes and Models. Soil Biology and Biochemistry, 59, 72–85. https://doi.org/10.1016/j.soilbio.2013.01.002

Muhaimin, M. Y., Rahma Annisa, A., & Montolalu, B. (2022). Rancang Bangun Smart System Green House untuk Budidaya Melon Berbasis PLC. Journal of Technology and Informatics (JoTI), 4(1), 26–30. https://doi.org/10.37802/joti.v4i1.260

Nguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016). Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements. Journal of Visualized Experiments, 113(e54317), 1–9. https://doi.org/10.3791/54317

Nisha, S. K., Sreelathakumary, I., & Vijeth, S. (2020). Effect of Fertigation and Drip Irrigation on Yield and Quality of Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. Journal of Applied Horticulture, 22(1), 67–70. https://doi.org/10.37855/jah.2020.v22i01.13

Noh, H., & Lee, J. (2022). The Effect of Vapor Pressure Deficit Regulation on the Growth of Tomato Plants Grown in Different Planting Environments. Applied Sciences (Switzerland), 12(7). https://doi.org/10.3390/app12073667

Nora, S., Yahya, M., Mariana, M., Herawaty, H., & Ramadhani, E. (2020). Teknik Budidaya Melon Hidroponik dengan Sistem Irigasi Tetes (Drip Irrigation). Agrium, 23(1), 21–26. http://jurnal.umsu.ac.id/index.php/agrium/article/view/5654

Nursyahid, A., Helmy, H., Karimah, A. I., & Setiawan, T. A. (2021). Nutrient Film Technique (NFT) Hydroponic Nutrition Controlling System using Linear Regression Method. IOP Conference Series: Materials Science and Engineering, 1108(1), 012033. https://doi.org/10.1088/1757-899x/1108/1/012033

Nut, N., Phou, K., Mihara, M., Nut, S., & Sor, S. (2019). Effects of Drip Irrigation Frequency on Growth and Yield of Melon (Cucumis melo L.) Under Net-house’s Conditions. International Journal of Environmental and Rural Development, 10(1), 146–152.

Nut, N., Seng, S., & Mihara, M. (2017). Effect of Drip-Fertigation Intervals and Hand-Watering on Tomato Growth and Yield. International Journal of Environmental and Rural Development, 8(1), 1–6.

Parkash, V., & Singh, S. (2020). A Review on Potential Plant-Basedwater Stress Indicators for Vegetable Crops. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/SU1210394

Patil, D. V., Bhagat, K. P., & Saha, S. (2014). Effect of Water Stress at Critical Growth Stages in Drip Irrigated Muskmelon (Cucumis melo L.) of Semi-Arid Region of Western Maharashtra, India. Plant Archives, 14(1), 161–169.

Pradana, R., & Irawati, R. (2016). Metode Fuzzy Logic dalam Konsep Irigasi Air Dengan Mikrokontroler Arduino. Jurnal Telematika Mkom, 8(2), 107–113.

Puno, J. C. V., Haban, J. J. I., Alejandrino, J. D., Bandala, A. A., & Dadios, E. P. (2020). Design of a Nutrient Film Technique Hydroponics System with Fuzzy Logic Control. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 403–408. https://doi.org/10.1109/TENCON50793.2020.9293749

Radhouani, A., El Bekkay, M., & Ferchichi, A. (2011). Effect of Substrate on Vegetative Growth, Quantitative and Qualitative Production of Muskmelon (Cucumis melo) Conducted in Soilless Culture. African Journal of Agricultural Research, 6(3), 578–585.

Rafique, M. A. Z. M., Tay, F. S., & Then, Y. L. (2021). Design and Development of Smart Irrigation and Water Management System for Conventional Farming. Journal of Physics: Conference Series, 1844(1), 2–9. https://doi.org/10.1088/1742-6596/1844/1/012009

Reddy, K. C. K., & Venkatrao, P. (2013). Real Time Field Monitoring and Controlling System. International Journal of Recent Technology and Engineering, 2(4), 2277–3878.

Riyanto, D., Winardi, Y., & Muhsin, M. (2021). Development of Agricultural Irrigation Pump Using Solar Electric Energy in Duri Village, Slahung, Ponorogo (in Indonesian). Agrokreatif, 7(2), 162–167.

Roberts, P., Dufault, N., Hochmuth, R., Vallad, G., & Paret, M. (2019). Fusarium Wilt (Fusarium oxysporum f. sp. niveum) of Watermelon. Ifas Extension, PP352 EDIS(5),1-4.

Rodriguez, R. D. L. R., Herreza, A. L., Tellez, L. I. T., Bernal, L. E. P., Sanchez, L. O. S., & Rodriguez, J. M. O. (2020). Water and Fertilizerz Use Efficiency in Two Hydroponic System for Tomato Production. Horticultura Brasilcira, 38(1), 47–52.

Roidah, I. S. (2014). Pemanfaatan Lahan dengan Menggunakan Sistem Hidroponik. Jurnal Univeritas Tulungagung Bonorowo, 1(2), 43–50.

Rolbiecki, R., Rolbiecki, S., Figas, A., Jagosz, B., Wichrowska, D., Ptach, W., Prus, P., Sadan, H. A., Ferenc, P. F., Stachowski, P., & Liberacki, D. (2021). Effect of Drip Fertigation with Nitrogen on Yield and Nutritive Value of Melon Cultivated on a Very Light Soil. Agronomy, 11(5), 1–11. https://doi.org/10.3390/agronomy11050934

Sagheer, A., Mohammed, M., Riad, K., & Alhajhoj, M. (2021). A Cloud-based IoT Platform for Precision Control of Soilless Greenhouse Cultivation. Sensors (Switzerland), 21(1), 1–29. https://doi.org/10.3390/s21010223

Sakadevan, K., & Nguyen, M.-L. (2015). Factors Influencing Water Dynamics in Agriculture (Issue January). https://doi.org/10.1007/978-3-319-21629-4_5

Saptomo, S. K., Suwarno, W. B., Anggara, H., Wirasembada, C., & Setiawan, B. I. (2019). Performance of Ring Irrigation System for Melon Breeding in a Greenhouse. International Commission on Irrigation and Drainage, 1–8.

Sengul, N., Yildirim, O., Halloran, N., Cavusoglu, S., & Dogan, E. (2014). Yield and Fruit Quality Response of Drip-Irrigated Melon to the Duration of Irrigation Season. Toprak Su Dergi?si?, 3(2), 90–101. https://doi.org/10.21657/tsd.74315

Sesanti, R. N. (2018). Pengaruh Electrical Conductivity (EC) Larutan Nutrisi Hidroponik terhadap Pertumbuhan Tanaman Melon (Cucumis melo L.). Prosiding Seminar Nasional Pengembangan Teknologi Pertanian, ISBN 978-602-5730-68-9 halaman, 206–211. https://jurnal.polinela.ac.id/index.php/PROSIDING/article/view/1168

Setiawati, R., & Bafdal, N. (2020). Dampak Kualitas Air Tanah Terhadap Kualitas Melon (Cucumis Melo L.). Agrotekma: Jurnal Agroteknologi Dan Ilmu Pertanian, 4(2), 83–93. https://doi.org/10.31289/agr.v4i2.2868

Setyaningrum, D. A., Tusi, A., & Triyono, S. (2014). Aplikasi Sistem Irigasi Tetes Pada Tanaman Tomat ( Lycopersicum esculentum Mill ). Jurnal Teknik Pertanian Lampung, 3(2), 127–140.

Shareef, T. M. E., & Ma, Z. (2019). Essentials of Drip Irrigation System for Saving Water and Nutrients to Plant Roots: As a Guide for Growers. Journal of Water Resource and Protection, 11(09), 1129–1145. https://doi.org/10.4236/jwarp.2019.119066

Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics As An Advanced Technique for Vegetable Production: An Overview. Journal of Soil and Water Conservation, 17(4), 364. https://doi.org/10.5958/2455-7145.2018.00056.5

Shevale, R., Karad Ndmvps’, S., Nashik, K., Ndmvps’, A. K., Merchant Ndmvps’, M., & Mishra Ndmvps’, V. (2018). IoT Based Real Time Water Monitoring System for Smart City. International Journal of Innovative Science and Research Technology, 3(4), 246–251. www.ijisrt.com

Shreelakshmi, C. M., Asharani, M., Ambreen, K., & Parvathi, S. J. (2018). Design of a Smart Irrigation Management System Based on IoT. International Journal of Innovative Research in Technology, 4(12), 708–710.

Shwetha, N., Niranjan, L., Gangadhar, D., Jahagirdar, S., Suhas A, R., & Sangeetha, N. (2021). Efficient Usage of Water for Smart Irrigation System using Arduino and Proteus Design Tool. 2nd International Conference on Smart Electronics and Communication, ICOSEC 2021, 54–61. https://doi.org/10.1109/ICOSEC51865.2021.9591709

Singgeta, R. L., Lin, H.-W., & Chang, Y.-H. (2016). Raspberry Pi based pH Control for Nutrient Film Hydroponic System. OSF Preprints, 1(1), 1–6.

Song, X., Bai, P., Ding, J., & Li, J. (2021). Effect of Vapor Pressure Deficit on Growth and Water Status in Muskmelon and Cucumber. Plant Science, 303, 110755. https://doi.org/10.1016/j.plantsci.2020.110755

Sonnenberg, D., Ndakidemi, P. A., Okem, A., & Laubscher, C. (2016). Effects of Drip Irrigation on Growth, Physiological Parameters, and Yield in Hydroponically Cultivated Cucumis Sativus. HortScience, 51(11), 1412–1416. https://doi.org/10.21273/HORTSCI11080-16

Sonwane, P., & Ghutke, P. (2020). Real-Time Implementation of an Automated Irrigation System for Effective Water Application to Improve Productivities of the Crop in India. Journal of The Institution of Engineers (India): Series A, 101(3), 485–493. https://doi.org/10.1007/s40030-020-00451-7

Sumartono, G., & Sumarni, E. (2013). Pengaruh Suhu Media Tanam Terhadap Pertumbuhan Vegetatif Kentang Hidroponik di Dataran Medium Tropika Basah. Agronomika, 13(1), 1–9.

Thaher, T., & Ishaq, I. (2020). Cloud-based Internet of Things Approach for Smart Irrigation System: Design and Implementation. International Conference on Promising Electronic Technologies, ICPET 2020, 32–37. https://doi.org/10.1109/ICPET51420.2020.00015

Tsang, S. W., & Jim, C. Y. (2016). Applying Artificial Intelligence Modeling to Optimize Green Roof Irrigation. In Energy and Buildings (Vol. 127). Elsevier B.V. https://doi.org/10.1016/j.enbuild.2016.06.005

Tüzel, Y., Gül, A., Tüzel, I. H., & Öztekin, G. B. (2019). Different Soilless Culture Systems and Their Management. Journal of Agricultural, Food and Environmental Sciences, 73(3), 7–12. https://doi.org/10.55302/jafes19733007t

Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations. Agriculture (Switzerland), 12(5), 1–21. https://doi.org/10.3390/agriculture12050646

Vescera, M., & Brown, R. N. (2016). Effects of Three Production Systems on Muskmelon Yield and Quality in New England. HortScience, 51(5), 510–517. https://doi.org/10.21273/hortsci.51.5.510

Vimal, S. P., Sathish Kumar, N., Kasiselvanathan, M., & Gurumoorthy, K. B. (2021). Smart Irrigation System in Agriculture. Journal of Physics: Conference Series, 1917(1), 1–9. https://doi.org/10.1088/1742-6596/1917/1/012028

Wahjunie, E. D., Haridjaja, D., H, S., & Sudarsono. (2018). Pergerakan Air Tanah dengan Karakteristik Pori berbeda dan Pengaruhnya pada Ketersediaan Air bagi Tanaman. Jurnal Tanah Dan Iklim, 28(3), 15–26.

Wang, J., Huang, G., Li, J., Zheng, J., Huang, Q., & Liu, H. (2016). Effect of Soil Moisture-based Furrow Irrigation Scheduling on Melon (Cucumis melo L.) Yield and Quality in an Arid Region of Northwest China. Agricultural Water Management, 179, 167–176. https://doi.org/10.1016/j.agwat.2016.04.023

Wiangsamut, B., Koolpluksee, M., & Makhonpas, C. (2017). Yield, Fruit Quality, and Growth of 4 Cantaloupe Varieties Grown in Hydroponic System and Drip Irrigation Systems of Substrate and Soil Culture. International Journal of Agricultural Technology, 13, 1381–1394.

Wibisono, V., & Kristyawan, Y. (2021). An Efficient Technique for Automation of The NFT (Nutrient Film Technique) Hydroponic System Using Arduino. International Journal of Artificial Intelligence & Robotics (IJAIR), 3(1), 44–49. https://doi.org/10.25139/ijair.v3i1.3209

Widaryanto, E., Wicaksono, K. P., & Najiyah, H. (2017). Drought Effect Simulation on the Growth and Yield Quality of Melon (Cucumis melo l.). Journal of Agronomy, 16(4), 147–153. https://doi.org/10.3923/ja.2017.147.153

Woltering, L., Ibrahim, A., Pasternak, D., & Ndjeunga, J. (2011). The Economics of Low Pressure Drip Irrigation and Hand Watering for Vegetable Production in the Sahel. Agricultural Water Management, 99(1), 67–73. https://doi.org/10.1016/j.agwat.2011.07.017

Xiong, J., Tian, Y., Wang, J., Liu, W., & Chen, Q. (2017). Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality. Frontiers in Plant Science, 8, 1–9. https://doi.org/10.3389/fpls.2017.01327

Yavuz, D., Seymen, M., Yavuz, N., Çoklar, H., & Ercan, M. (2021). Effects of Water Stress Applied at Various Phenological Stages on Yield, Quality, and Water Use Efficiency of Melon. Agricultural Water Management, 246, 1–11. https://doi.org/10.1016/j.agwat.2020.106673

Yildirim, O., Halloran, N., Çavu?o?lu, ?., & ?engül, N. (2009). Effects of Different Irrigation Programs on the Growth, Yield, and Fruit Quality of Drip-Irrigated Melon. Turkish Journal of Agriculture and Forestry, 33(3), 243–255. https://doi.org/10.3906/tar-0806-19

Yin, S., Ibrahim, H., Schnable, P. S., Castellano, M. J., & Dong, L. (2021). A Field-Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit. Advanced Materials Technologies, 6(6), 1–9. https://doi.org/10.1002/admt.202001246

Yolanda, D., Hindersah, H., Hadiatna, F., & Triawan, M. A. (2017). Implementation of Real-time Fuzzy Logic Control for NFT-based Hydroponic System on Internet of Things Environment. Proceedings of the 2016 6th International Conference on System Engineering and Technology, ICSET 2016, 153–159. https://doi.org/10.1109/FIT.2016.7857556

Zeng, C. Z., Bie, Z. L., & Yuan, B. Z. (2009). Determination of Optimum Irrigation Water Amount for Drip-irrigated Muskmelon (Cucumis melo L.) in Plastic Greenhouse. Agricultural Water Management, 96(4), 595–602. https://doi.org/10.1016/j.agwat.2008.09.019

Zhang, D., Du, Q., Zhang, Z., Jiao, X., Song, X., & Li, J. (2017). Vapour Pressure Deficit Control in Relation to Water Transport and Water Productivity in Greenhouse Tomato Production During Summer. Scientific Reports, 7(January), 1–11. https://doi.org/10.1038/srep43461

Zhang, J., & You, C. (2013). Water Holding Capacity and Absorption Properties of Wood Chars. Energy and Fuels, 27(5), 2643–2648. https://doi.org/10.1021/ef4000769

Published

30-04-2025

How to Cite

Qudrat Aini, Wahono, Agus Zainuddin, Fatimah Nursandi, & Padhina Pangestika. (2025). Perkembangan Irigasi Pintar pada Melon (Cucumis melo L) Hidroponik (Sebuah Studi literatur). Journal Galung Tropika, 14(1), 33–52. https://doi.org/10.31850/jgt.v14i1.1099

Issue

Section

Articles

Citation Check

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.